Hong Kong Baptist University Faculty of Science – Department of Physics

Title (Units): PHYS 4057 ENERGY MANAGEMENT II (3,3,1)

Course Aims: This course focuses on building energy management for quantitative analysis of building energy use and performance. With application of experiential learning theory, students reflect on their learning through serving the community, or implementing practical a project.

Pre-requisites: PHYS 4056 Energy management I or consent of instructor.

Course Reviewed by: Dr. Junxue Fu & Dr. M.H. Chan

Course Intended Learning Outcomes (CILOs):

No.	Upon successful completion of this course, students should be able to:
1	Explain the principle of energy usage in buildings, for example, electrical, HVAC, motors, thermal energy storage, lighting, boiler and steam systems.
2	Analyze residential/industrial energy efficiency and energy management model.
3	Be aware of the needs of the community in learning and applications of energy management.
4	Develop communication skills with the community to promote efficient energy usage and energy saving.

Teaching & Learning Activities (TLAs)

CILOs	TLAs will include the following:
1 – 2	Conduct class discussion and demonstration related to selective topics of building energy management.
1-2	Discuss case studies and conduct building energy auditing practicum.
3-4	Group projects (eg., service-learning teaching the community of applications of energy management strategy in our daily-life buildings).

Hong Kong Baptist University Faculty of Science – Department of Physics

Assessment Methods (AMs):

Type of Assessment	Weighting	CILOs to be	Description of Assessment Tasks
Methods		addressed	
Service-Learning	50%	1-4	For service-learning group project,
Group Project or			report, presentation, and reflection of
Practical Group			group service project (eg., experiential
Project			learning cycle) are used to evaluate
			the quality of service learning.
Homework or Report	20%	1-4	A building energy audit practicum and
			a report of around 10 pages are
			required to evaluate how effectively
			the students have applied the relevant
			knowledge to conduct building energy
			audit.
Final Examination	30%	1-4	Final Examination questions are
			designed to test how far students have
			achieved their intended learning
			outcomes. Questions will primarily be
			analysis and skills-based to assess the
			students' capability in understanding
			and performing energy audit of
			buildings.

Learning Outcomes and Weighting:

Content		Teaching
	No.	(in hours)
I. HAVC system energy management	1 - 2	5
II. Boiler and steam system energy management	1 - 2	4
III. Lighting energy management	1 - 2	5
IV. Motors and appliance energy management	1 - 2	4
V. Group Project (e.g., Service-Learning Project)	3 - 4	18

Textbook:

- Frank Kreith, D. Yogi Goswami, editor: *Energy Management and Conservation Handbook*, CRC Press, 2008.

Hong Kong Baptist University Faculty of Science – Department of Physics

References:

- 1. B.L. Capehart, W.C. Turner, and W.J. Kennedy; Guide to Energy Management; 7th Ed., The Fairmont Press Inc. 2011
- 2. Frank Kreith, D. Yogi Goswami, editor: Energy Management and Conservation Handbook, CRC Press, 2008
- 3. Mike Montoya: Green Building Fundamentals, Prentice Hall, 2010.

Course Content in Outline:

	Торіс	Hours
I.	HAVC system	5
	A. Coefficient of performance	
	B. Control, thermal storage, absorption system	
II	Boiler and steam system	4
	A. Boiler efficiency and improvement	
	B. steam system efficiency and improvement	
III	Lighting	5
	A. Economic evaluation of lighting improvements	
	B. HVAC related lighting management	
IV	Motors and appliance	4
	A. Cost-effective motors	
	B. Motor energy management	
V	Group Project (for example: Service-Learning Project)	18
	A. Pre-service preparatory work (such as development of teaching gadgets for	
	energy management community education)	
	B. Pre-service training	
	C. Off-campus energy management educational service	